

New Brunswick Soil & Crop Improvement Association Inc. 2-150 Woodside Lane Fredericton, NB E3C 2R9 Tel: 506-454-1736 Fax: 506-453-1985 www.nbscia.ca

Enabling Agricultural Research and Innovation Interim Report

Element 1, Innovative Research and Development

- 1. Project title and project number: Soil Health Bench Marking-Reference Project C1920-0036-Y2
- Project leader and collaborators: NBSCIA Club Agrologists; Project Lead Ray Carmichael Hardy Strom, Soil Health Research Coordinator, PEI Department of Agriculture & Land

ABSTRACT/RÉSUMÉ

This project aims to continue the initial survey of soil health values or parameters across a range of soil types and/or management practices common to New Brunswick farm systems, and is reporting for April 1, 2020 to Feb 13, 2021. 95 field samples were identified by NBSCIA members, and collected by NBSCIA Agrologists following the methodology developed in the last update of this project (Soil Health Bench Marking-Reference Project C1920-0036). All fields and sample sites were geo-referenced in the NBSCIA Geodatabase using the NBARMS field identification system. All analysis and reporting followed procedures from the PEI Analytical Laboratory (PEIAL) in 2020. Though sample numbers were limited, the data shows there are differences between cropped and non-cropped areas, with significant differences between results from these two types of area in the province and the potato rotation sites in Carleton County. In-field variability and differences within a provincial area were observed. This should be considered when making recommendations for improving soil health in these areas. To the extent possible, sample locations will be coordinated with consultants and other project operators with on-going trials throughout New Brunswick so that additional information (e.g., yield response, disease pressure) can be brought into the interpretation of the soil health results. In Appendix B, this report details results for Carleton, Central, Kings, Moncton, Chignecto, North Shore and North West for the following soil health indicators: % SAND, % SILT, % CLAY, TEXTURE, OM, ACTIVE CARBON, RESPIRATION, Aggregate Stability, BNA, pH, P_INDEX, C:N and % C. More soil samples and testing will need to be completed to create a database for comparisons of soil health in New Brunswick.

Ce projet vise à poursuivre l'enquête originale sur les valeurs ou les paramètres de la santé des sols pour une gamme de types de sols et/ou de pratiques de gestion communes aux systèmes agricoles du Nouveau-Brunswick. Il vise la période du 1er avril 2020 au 13 février 2021. 95 échantillons de terrain ont été identifiés par les membres de l'AASCNB, et recueillis par les agronomes de l'AASCNB selon la méthodologie développée dans la dernière mise à jour de ce projet (référence/analyse comparative sur la santé des sols C1920-0036). Tous les champs et sites d'échantillonnage ont été géoréférencés dans la base de données de l'AASCNB au moyen du système d'identification des champs du SGRA du Nouveau-Brunswick. Toutes les analyses et tous les rapports ont été produits conformément aux procédures des laboratoires analytiques de l'Î.-P.-É. (PEIAL) en 2020. Bien que le nombre d'échantillons soit limité, les données révèlent des différences entre les zones cultivées et non cultivées, notamment des disparités importantes entre les résultats de ces deux types de zones dans la province et les champs de culture de pommes de terre en rotation dans le comté de Carleton. Une variabilité et des différences au sein d'une même région provinciale ont été observées. Il y a lieu d'en tenir compte lors de la formulation de C1920-0036-Y2_Interim_Report_Feb5_2021 - AGedits

recommandations visant à améliorer la santé des sols dans ces régions. Dans la mesure du possible, les emplacements retenus pour les échantillons devront être coordonnés avec les consultants et les autres exploitants de projets qui mènent des essais dans l'ensemble du Nouveau-Brunswick, afin que des renseignements supplémentaires (p. ex., incidence sur le rendement, pression exercée par les maladies) puissent être pris en compte dans l'interprétation des résultats sur la santé des sols. Dans l'annexe B, ce rapport détaille les résultats pour les régions de Carleton, Centre, Kings, Moncton, Chignecto, Côte-Nord et Nord-Ouest pour les indicateurs de santé des sols suivants : % SABLE, % LIMON, % ARGILE, TEXTURE, OM, CARBONE ACTIF, RESPIRATION, stabilité structurale, BNA, pH, P_INDEX, C:N et % C. D'autres prélèvements et analyses de sol devront être effectués afin de créer une base de données permettant de comparer la santé des sols au Nouveau-Brunswick.

3. Specify period of time for which the interim report is being submitted. April 1, 2020 - Feb13, 2021

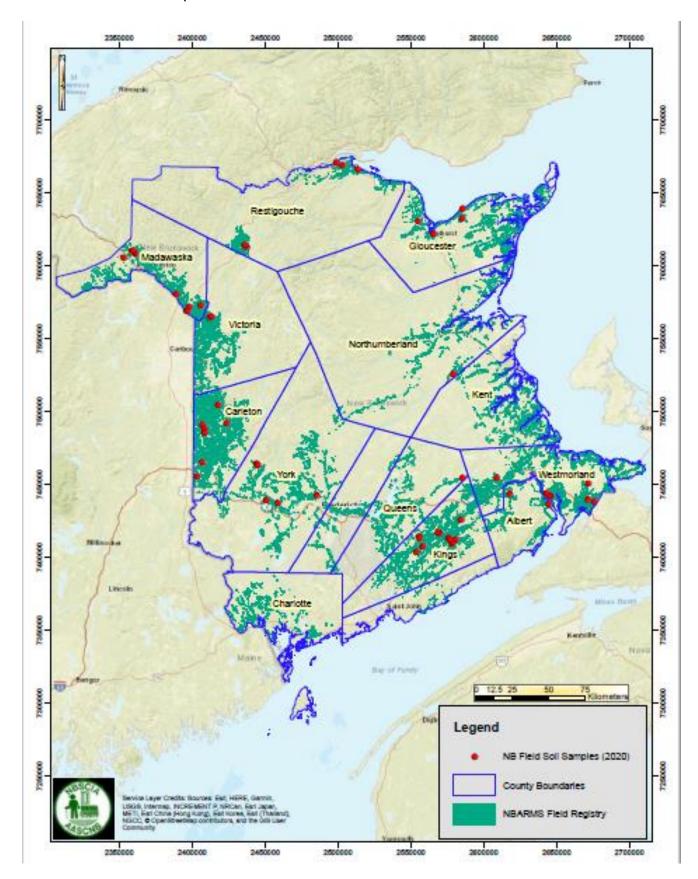
4. Project Objective(s):

To continue the initial survey of soil health values or parameters across a range of soil types and/or management practices common to New Brunswick farm systems.

5. Project Deliverable(s):

• A definition of soil health values around a specific agricultural systems or management practices in New Brunswick's major commodities.

• A final report documenting the project results and recommended protocols


6. Summary of Progress:

The DalAC Atlantic Soil Health Lab is primarily a research facility and not equipped or staffed to provide routine and timely analysis for commercial application. Therefore, all analysis and reporting followed procedures from the PEI Analytical Laboratory (PEIAL) in 2020.

The PEI Analytical Laboratory Soil Health package includes Soil Respiration, Aggregate Stability, Active Carbon, Biological Nitrogen Availability, and Soil Texture with the following standard soil sample analysis: pH, OM, P2O5, K2O, Ca, Mg, Cu, Zn, Fe, Mn, S, B, Na, Al, Lime Index, and CEC (Appendix A). The soil texture classification is calculated from the percent sand, clay and silt values using the USDA Natural Resources Conservation textural classification.

Field sampling techniques and delivery logistics for this activity followed those developed in 2019 and reported in Project C1920-0036.

95 field or sample sites were identified in consultation with NBSCIA members and sample collection was coordinated by NBSCIA agrologists. All fields and sample sites were geo-referenced in the NBSCIA Geodatabase using the NBARMS field identification system. (Illustration 1).

Illustration 1 Soil Health Sample Site Locations

The PEIAL input sheet was completed to record crop history and crop management practices that impact soil health (below).

PEI Analytical Laboratories

Soil Health Analysis

	(23 Innovatio Charlottetown, P.				www.p		iest Form ardisland.ca	/labsen	vices			
Farm/Client			Contact Name:		PEIAL Cilent	# or PEI T	ax Exempt #						
Telephone :	op Improvement A	Association	Call Phone #		1607080016								
506-276-33							-						
Client Maill	ng Address:		_	Pre	ferred Method for	Receiving	Reports:						
2-150 V	Voodside Lan	e			Mall	Z E-	Mall	Fax					
				CI	Client E-mail Address: carleton@nbscia.ca								
Community Frederict			Postal Code: E3C 2R9		Client Fax #								
Bill To If dif	ferent from above			Ad	Additional Name to appear on Report (Ie. For clients submitting 3" party samples)								
NA.													
				Sa	mpling Date:			esuits to Nutrient	Managem	ent Specialist			
Copy To: Ra	e. Camichael				Copy To E-Mail: oxfetor@rbsds.cs								
Sample #	Field ID (Limit of 12 Characters	2 Primary Cr	crop History ions)	Tillage Depth	Pa	st Yield This Field	Is field regu amended with r or other amen (excluding ii	manures dments	Analysis Package				
1		Grains, C Other Veg	os (potato, carrot, rutabaga) orn, Peas, Beans jetables ay, & Pasture (long term)		No till 1-7 inch 7-9 inch		Below Avg. Average Yes No Above Avg.			SH1			
		Fruit & Be			>9 inch								
2		Grains, C	ay, & Pasture (long term)		No till □ 1-7 inch □ 7-9 inch □ >9 inch		low Avg. erage oove Avg.	Yes 🗌	No	SH1			
3		Grains, C	ay, & Pasture (long term) erries		■ No till ■ 1-7 inch ■ 7-9 inch ■ >9 inch		low Avg. erage ove Avg.	Yes [No No	SH1 Soll Accession #			
			See Reverse Side										
Date Rec'o	d:	# of Samples:	Info Page	Sample Rec'o Satisfactory	l by: Non-Satisfacto	-	oil Health A	ccession #	Mail-out	t Ver./Date			

Results are provided in a report as illustrated below;

Soll Health Test Report	
16-Nov-2020	

PEI Analytical Laboratories PEI Department of Agriculture and Land 23 Innovation Way PO Box 2000, Charlottelown, PE C1A 7N8 Far: (902)-956-6299 Telephone: (902)-620-3300

17	m	œ
	33	nd
T /	3885	1160
	1	Tisla

NB Sol & Crop Imp Assoc Ray Camithaet 200 Route 560 Williamstown, NB ETX 156	Client No: Accession No: Samples Reported: Samples Received:	16-Nov-2020
Willamstown, NB	Samples Reported:	16-Nov-2

Soll Heath #: SH200921001-1	Soll #: \$200921016-1		Sample ID: 13				
Tillage Depth: 7 - 9 Inch	Cropping System:			plied (manure, eto):			
Yield: Average	Root Crops		Yes No				
Soll Texture							
Sand (%) 29.6							
8lit (%) 51.5							
Clay (%) 18.8	Soll Texture Class	: SitL	oam				
Test	Results		Score It of 100)	Rating			
Organic Matter	2.9%		53	M			
Active Carbon	364 µg/g		21	L			
Soll Respiration	0.69 mg/g		73	м			
Aggregate Stability	33.0 %		28	L+			
Biological Nitrogen Availability	12.9 mg/kg		14	L			
рН	5.8		819	Restored to a			
Phosphorous Index (P/AI)	18.15 %			65			
C:N Ratio	9.33			The second secon			
Total Carbon	1.68 %	http://www	w princoadwardi	sland.ca/labservices			
Total Nitrogen	0.18 %	and provide the					
Dates of analysis available upon request. Organic Matter is calculated from Total Carbo				d due to Total Nitrogen or			
Copies To: NB Soil & Crop Imp Assoc	:		Approved By:	AS			
Methods: SHL_1M Active Carbon SHL_2M Soil Respiration SHL_3M Biological Nitrogen. Accredited and NAPT Certified Method	SHL_5M Texture SHL_4M Wet Agg Availability		SFL_22M - pk lty SFL_23M - O SFL_24M - Nu	rganic Matter"			

C1920-0036-Y2_Interim_Report_Feb5_2021 - AGedits

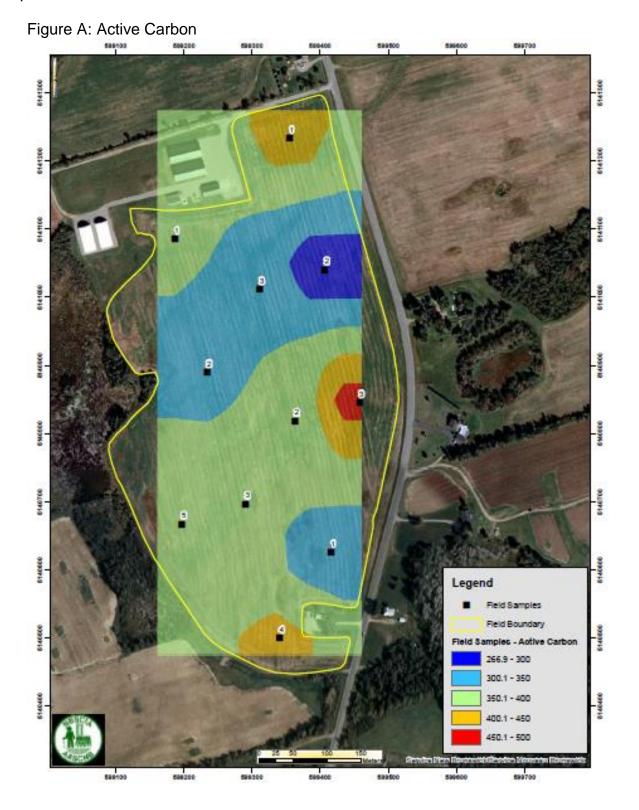
The PEI scoring and rating values reported are derived from a database of 547 samples using a cumulative normal distribution model in which the highest value is 100 and the lowest 0. A similar process will be developed for New Brunswick as the database expands.

Rating	Interpretation
Low (0-25)	The "Low" rating means the test value is among the lowest 25% for all sites sampled across PEI and may be limiting the productivity of the system. Short and long term management strategies should be implemented to build up the soil health within the field.
Low+ (26-50)	The "Low +" rating means the test value is below average of all sites sampled across PEI. Review management practices and consider including additional short and long term management. Re-test again after one full rotation to determine if the field is trending towards improvement or decline.
Medium (51-75)	The "Medium" rating means the test value is above average of all sites sampled across PEI. Consider which practices are currently working on the farm and where areas for improvement may exist. Prioritize this against the status of other tests and fields reported to determine where resources and time should be spent.
High (76-100)	The "High" rating means the test value is among the top 25% of all sites sampled across PEI. Consider field history and previous management practices to identify ways of maintaining the strong rating. If making changes to cropping practices, consider how it may affect soil health and in this event, plan future re-sampling to observe changes or trends. Focus management strategies on other lower-rated soil health test results if they exist.

A detailed interpretation of the PEIAL Soil Health Report is presented in Appendix A.

Data for all samples collected in 2020 is reported in Appendix B. Overall and District average values are presented in Table 1 (below).

Comparative values for cropped and non-cropped areas such as fence lines are reported in Table 2. Although a limited number of samples are reported the data does reflect differences between cropped and non-cropped areas and suggested a significant differentiation between the potato rotation (Carleton) and other regions of the Province. A larger sample set is required for more conclusive results. [**Table 2 Note:** *Field IDs in the upper most rows correspond to the non crop rows immediately below.*]


New Brunswick Soil & Crop Improvement Association Inc. 2-150 Woodside Lane Fredericton, NB E3C 2R9 Tel: 506-454-1736 Fax: 506-453-1985 www.nbscia.ca

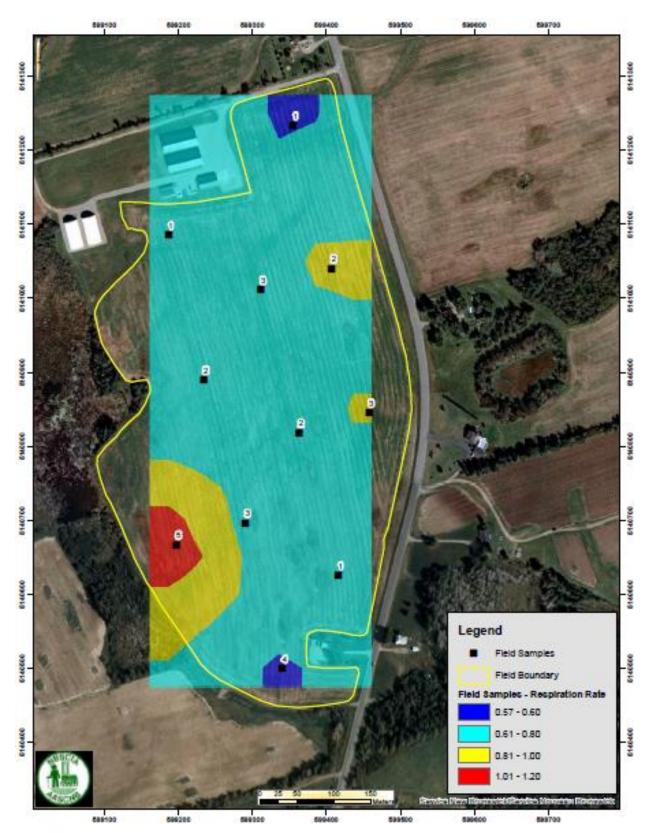
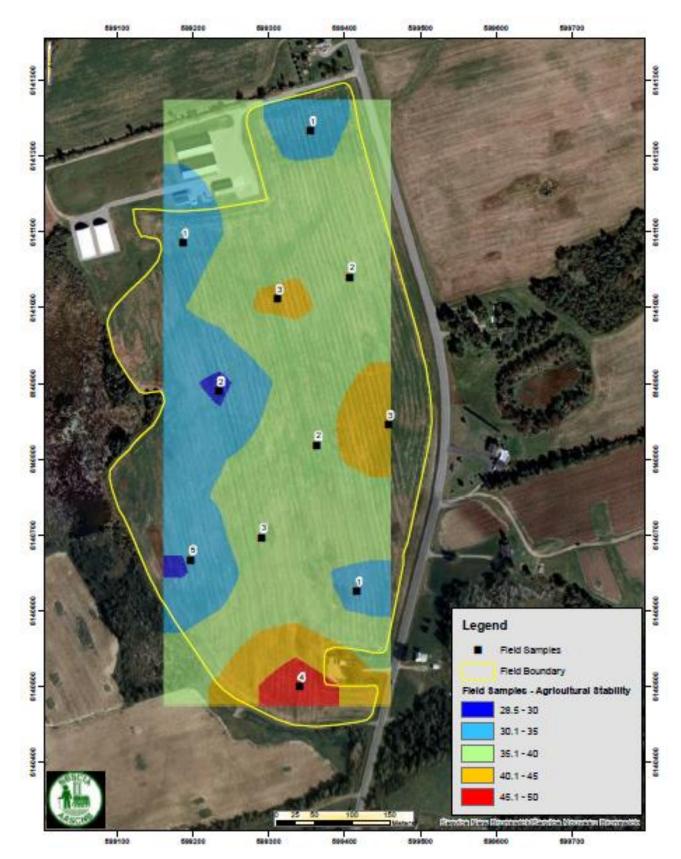


TABLE 1: Overall and Average Soil Health Values by NBSCIA District													
					ACTIVE	RESPIR	Aggregate						
DISTRICT	% SAND	% SILT	% CLAY	ОМ	CARBON	ATION	Stability	BNA	рН	P_INDEX	C:N RATIO	% C	% N
Carleton Avg.	29.0	51.2	19.7	5.0	538.3	0.9	49.1	38.6	5.9	11.5	10.6	2.9	0.3
StD.	6.4	5.9	7.6	2.5	231.4	0.5	28.6	32.3	0.5	6.9	2.4	1.4	0.1
Central Avg.	41.6	45.9	12.5	5.8	661.5	1.1	73.4	53.8	5.9	6.6	10.5	3.4	0.3
StD.	17.2	14.1	3.8	2.7	231.8	0.5	15.6	27.0	0.4	5.1	1.9	1.6	0.1
Kings Avg.	48.5	39.7	11.8	5.0	658.3	0.9	50.4	45.3	6.1	9.0	10.4	2.9	0.3
StD.	13.0	10.3	3.6	1.5	184.2	0.3	22.9	20.0	0.5	6.4	1.6	0.9	0.1
Moncton Avg.	45.3	40.6	14.0	5.6	654.6	1.3	60.2	55.6	5.6	8.0	12.0	3.3	0.3
StD.	4.4	5.3	2.6	1.9	189.1	0.8	19.0	25.9	0.8	4.7	1.7	1.1	0.1
Chignetco Avg	38.7	43.8	17.4	7.0	719.2	1.2	63.3	60.2	6.0	6.9	10.7	4.0	0.4
Std.	19.4	12.5	9.6	5.2	292.4	0.4	24.1	32.0	1.0	5.0	1.1	3.0	0.3
Northshore Avg.	31.9	48.7	19.5	7.1	902.4	1.3	67.6	50.8	6.7	12.4	10.8	4.1	0.4
StD.	12.6	10.0	4.4	1.9	187.0	0.3	15.2	19.6	0.3	14.3	0.8	1.1	0.1
Northwest Avg.	33.7	51.4	14.9	7.3	813.3	1.0	77.0	45.9	6.1	11.2	10.3	4.2	0.4
StD.	11.4	8.7	4.5	2.9	249.8	0.5	21.0	21.8	0.7	7.1	0.8	1.7	0.2
2020 Avg of 95	37.5	46.8	15.7	5.9	680.4	1.0	61.7	47.7	6.0	9.6	10.6	3.4	0.3

	TABLE: 2 Comparative Values for Cropped and Non-Cropped sample Sites by Region														
							ACTIVE	RESPIRA	Aggregate						
DISTRICT	FIELD_ID	% SAND	% SILT	% CLAY	TEXTURE	ОМ	CARBON	TION	Stability	BNA	рН	P_INDEX	C:N	% C	% N
Carleton	BP 1	30.7	52.5	16.8	Silt Loam	3.5	428	0.3	23.7	40.8	4.5	12.39	9.23	2.03	0.22
Carleton	KT 1	32.8	51.1	16.1	Silt Loam	3.4	366	0.45	21.6	29.3	5.8	18.92	5.97	1.97	0.33
Carleton	As Twin Low	26.2	54.1	19.6	Silt Loam	7.1	670	1.35	93.3	48.5	5.4	0.72	11.77	4.12	0.35
	Average:	29.9	52.6	17.5		4.7	488.0	0.7	46.2	39.5	5.2	10.7	9.0	2.7	0.3
Carleton	Noncrop	19.1	60.7	20.2	Silt Loam	6.5	815	1.82	88.9	81.1	6.2	2.18	19.84	3.77	0.19
Carleton	Noncrop	26.4	56.1	17.5	Silt Loam	8.1	705	1.47	93.3	62	5.5	5.36	13.82	4.7	0.34
Carleton	Noncrop	18.4	63.5	18.2	Silt Loam	12.3	1207	1.68	87.4	116.7	6.2	1.09	12.29	7.13	0.58
	Average:	21.3	60.1	18.6		9.0	909.0	1.7	89.9	86.6	6.0	2.9	15.3	5.2	0.4
Central	BB Pre Fum	71.6	19.3	9.1	Sandy Loam	4	454	0.52	74	22.8	5.4	6.6	10.55	2.32	0.22
Central	Home Farm B	35.2	51.7	13.1	Silt Loam	8.4	960	1.52	70.9	55.7	6.5	20.1	11.07	4.87	0.44
Central	DUM061	25.2	55.6	19.2	Silt Loam	8.2	990	1.58	81.7	84	6.3	3.09	11.07	4.76	0.43
Central	BRI284C	39.3	49.8	10.9	Loam	1.9	292	0.64	56.3	37	6	5.58	7.33	1.1	0.15
Central	BC 38	33.1	52.9	13.8	Silt Loam	6	718	0.7	68	47.7	6	6.4	9.67	3.48	0.36
Central	BC 21	22.7	62.7	14.6	Silt Loam	7.1	787	0.62	82.3	52.1	6.2	2.42	9.36	4.12	0.44
	Average:	37.9	48.7	13.5		5.9	700.2	0.9	72.2	49.9	6.1	7.4	9.8	3.4	0.3
Central	Noncrop	67.3	22.5	10.2	Sandy Loam	4.8	619	0.55	80	37.1	5.9	3.34	13.9	2.78	0.2
Central	Noncrop	46.4	44.4	9.3	Loam	7.7	711	0.96	93.1	35.9	5.7	4.2	13.15	4.47	0.34
Central	Noncrop	21.4	59.2	19.4	Silt Loam	7.2	722	1.68	89.4	96.2	5.7	2.92	10.2	4.18	0.41
Central	Noncrop	43	46.8	10.2	Loam	3.1	615	1.65	53	53	6.4	3.74	9.47	1.8	0.19
Central	Noncrop	26	56.6	17.5	Silt Loam	10.2	834	1.63	93.9	111.7	4.8	8.05	12.87	5.92	0.46
Central	Noncrop	22.3	61.4	16.2	Silt Loam	8.9	948	1.36	93.3	88.4	5.9	1.41	10.12	5.16	0.51
	Average:	37.7	48.5	13.8		7.0	741.5	1.3	83.8	70.4	5.7	3.9	11.6	4.1	0.4
Kings	SUS037	36.2	49.8	14	Loam	5.3	767	0.92	50.2	61.8	6	10.87	8.53	3.07	0.36
Kings	PHI351	40.7	41.9	17.3	Loam	4.1	734	0.8	18.5	33.2	6.7	8.41	13.22	2.38	0.18
	Average:	38.5	45.9	15.7		4.7	750.5	0.9	34.4	47.5	6.4	9.6	10.9	2.7	0.3
Kings	Noncrop	33.3	52.3	14.4	Silt Loam	6.1	813	1.01	61.2	67.6	6.3	7.03	9.57	3.54	0.37
Kings	Noncrop	39.6	44.7	15.7	Loam	4	498	0.8	46.9	26.9	4.6	2.61	13.65	2.32	0.17
	Average:	36.5	48.5	15.1		5.1	655.5	0.9	54.1	47.3	5.5	4.8	11.6	2.9	0.3
Moncton	COR487	49.2	37.5	13.3	Loam	5	751	0.66	32.2	42.4	6.3	17.7	14.5	2.9	0.2
Moncton	URY331	50.2	38.3	11.5	Loam	5.5	724	0.86	71	59.4	5.8	6.68	11	3.19	0.29
	Average:	49.7	37.9	12.4		5.3	737.5	0.8	51.6	50. 9	6.1	12.2	12.8	3.0	0.2
Moncton	Noncrop	43.4	38.2	18.4	Loam	9.2	836	2.48	78.8	78.5	4.5	7.43	13.69	5.34	0.39
Moncton	Noncrop	36.9	52.1	11	Silt Loam	4.1	478	2.17	76.3	99.4	5	7.66	11.33	2.38	0.21
	Average:	40.2	45.2	14.7		6.7	657.0	2.3	77.6	89.0	4.8	7.5	12.5	3.9	0.3
Chignecto	ELL113	49.7	35.4	14.9	Loam	5.3	451	1.02	71.8	66.2	5.7	2.66	10.96	3.07	0.28
Chignecto	Noncrop	37.4	42.6	20	Loam	6.1	669	1.68	78.5	69	5.9	2.04	10.41	3.54	0.34


As illustrated in Figures A, B, C and D (below) in-field variability between key Soil Health Indicator parameters exists, similar to that demonstrated for soil pH, OM and nutrient availability with geo-referenced soil sampling. There does not appear to be a strong correlation in location between the soil health parameters reported. This variability must be accounted for when defining sampling methodology to establish benchmarks to measure remediation procedures to improve soil health.

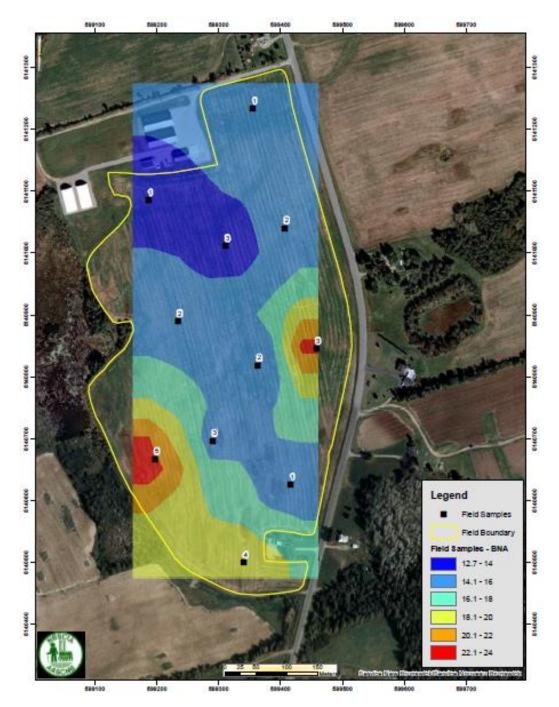
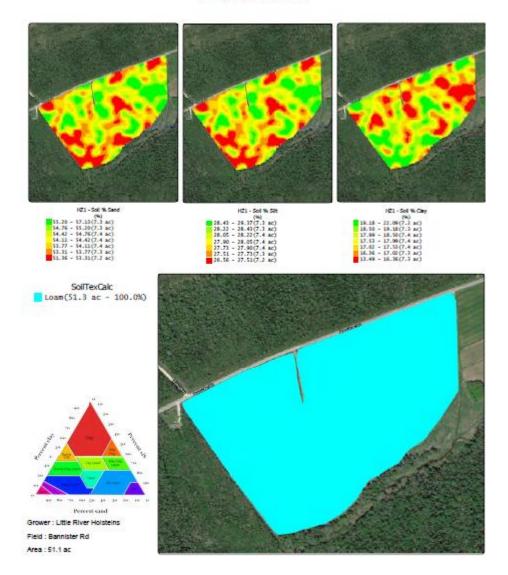


Figure B: Soil Respiration

Figure C: Aggregate Stability



It is of interest to note that the Soil Texture classification from the single sample from field COL184 in Appendix Table B reported by PEIAL is similar to that recorded by the SoilOptix® values from A&L Laboratories and interpolated using SMS software (Figure E).

Soil Texture

7. Adjustments:

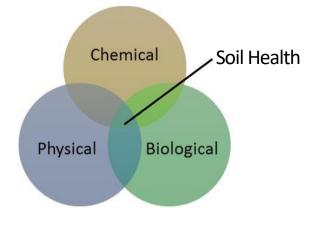
No significant adjustments are anticipated.

To the extent possible sample locations will be coordinated with consultants and other project operators with on-going trials throughout New Brunswick so that additional information (e.g., yield response, disease pressure) can be brought into the interpretation of the soil health results.

The outcome from this project will be an improved definition of soil health benchmark values provided by PEIAL around specific agricultural systems or management practices in New Brunswick's major commodities.

Appendix A PEI Soil Health Test Interpretation.

Agriculture and Land


PEI Soil Health Test - How to Interpret Your Results

September 2019

What is Soil Health?

"Soil health" is a term often used to define the ability of a soil to function. It focuses on all three primary soil properties: the physical, chemical, and biological components and how they affect plant productivity. By testing soil health parameters, we can better understand the limitations and stressors to a soil system, and try to adapt management practices to increase the areas that require improvement.

The chemical, biological, and physical properties of soil work cohesively together. By neglecting one aspect of soil health, you could be limiting other areas.

Section I - Soil Health Indicator Tests

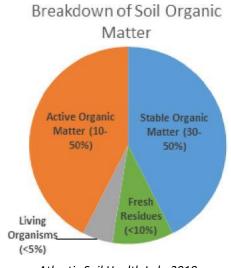
Each soil health test listed below is a useful indicator of one or more soil functions. The active carbon, soil respiration, aggregate stability, and soil texture tests were adapted from the Cornell Soil Health Assessment and Atlantic Soil Health Lab. The biological nitrogen availability test was adapted from the Atlantic Soil Health Lab.

Soil Texture

Soil texture is presented as the percentage of sand, silt, and clay particles found in a soil. Based on those results, your soil falls into one of several soil texture classes. There is no rating associated with soil texture results since texture cannot be altered or influenced through management practices. Generally, soil texture class will not change over time.

Soil texture can strongly influence many soil characteristics, such as the amount of soil organic matter that a soil could potentially contain. Therefore, soil texture can influence soil health test results. With sandy soils like those found on PEI, it can be difficult to build and maintain high levels of soil organic matter, which has the potential to decline faster than other soil types in response to crop management practices. On the other hand, sandy soils generally have better drainage than heavier clay soils.

Soil Organic Matter


One of the best indicators of soil health is soil organic matter content. Soil organic matter, measured as total soil carbon, represents the amount of carbon compounds in the soil that are derived from living and dead organisms and plant tissues. Organic matter exists in various stages of decomposition and is considered vital to soil health because it influences almost every important soil property, including fertility, nutrient cycling, water storage and infiltration, and extreme weather events.

The total soil organic matter value is reported as a percentage of the overall soil amount. The higher the value - the better.

It can take several years to notice an increasing or decreasing trend in soil organic matter levels beyond lab or field variability. This is partially due to the fact that a relatively large portion of soil organic matter is highly inactive and has taken thousands of years to form.

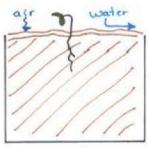
Active Carbon

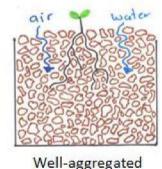
Soil organic matter can be divided into two different groups: the "stable" fraction and the "active" fraction. The "stable" (or "humus") fraction has formed over thousands of years, is resistant to breakdown, and not usable by plants. It stores carbon and provides an essential role in maintaining soil

Atlantic Soil Health Lab, 2018

structure and cation exchange capacity. The "active" soil organic matter fraction is more recently formed (1-5 years) and is more readily available to plants. The active fraction consists of decomposing plant and animal (microbe) tissues and acts to supply and recycle soil nitrogen. The active fraction is also involved in the formation of soil aggregates. The active soil organic matter fraction responds more quickly to crop management changes than the much larger stable soil organic matter in soil. Therefore, being able to evaluate the amount of active carbon is useful for measuring and tracking the impact of soil management practices on organic matter.

For the active carbon test, the higher the value - the better.


Soil Respiration


Microbes, including bacteria and fungi, play a critical role in regulating the carbon cycle and mineralizing nutrients, turning them into plant-available forms. Soil microbes also influence tilth (soil structure) and help protect crops against pests and disease. As the name implies, the soil respiration test assesses microbial activity by measuring the release of carbon dioxide (CO₂) from the soil. CO₂ respiration is a by-product of microbial metabolism, which includes mineralizing nutrients and breaking down residues. This test is a good indicator of overall microbial activity.

The value reported for the soil respiration test is in milligrams of CO₂ per gram of dry soil. **The higher the value - the better.**

Aggregate Stability

Soils are composed of many shapes and sizes of particles (sand, silt, and clay), and these particles form into structures known as "aggregates." These aggregates of soil particles are held together by organic matter, microorganisms, and the compounds these microorganisms produce. Having aggregates of different sizes results in spaces (or pores) between the aggregates, which allows water and air to move through the soil. The structural stability of soil is dependent

Poorly-aggregated

Adapted from Sullivan (1999)

on how well these aggregates are held together and by the types of particles present in the aggregate. Therefore, the presence and durability of aggregates is key to maintaining good soil structure.

A well-aggregated soil is more likely to maintain its structure in response to physical stress such as tillage, precipitation, and compaction. We measure aggregate stability by testing how well soil aggregates resist breaking apart during a simulated heavy rainstorm event. The value reported is in percentage of stable aggregates. **The higher the value - the better.**

Aggregate Stability Test On the left, this soil only retained 20% of the soil aggregates on the sieve during the rainfall simulation, whereas the soil on the right retained 63% of the soil aggregates. The higher aggregate stability found in the sample on the right means it will have greater

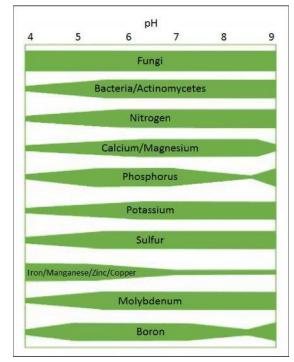
resistance to breakdown during stress (i.e., during extreme weather conditions).

Biological Nitrogen Availability

Nitrogen is stored in the soil in two forms – one is immediately plant available (inorganic), and the other (organic) is tied-up in a variety forms (i.e. in organic matter, microbial organisms, plant and root residues, etc.). Nitrogen becomes plant available when it is broken down (also known as mineralized) into an "inorganic" form, and can then be actively taken up by plant roots. This breakdown process occurs by microbes metabolizing these compounds and releasing nitrogen into a plant available form. This process is driven by microbes and is dependent on soil temperatures and moisture levels.

To measure how well your soil can provide plant-available nitrogen during the growing season, the biological nitrogen availability is tested by taking a dry, relatively inactive soil and exposing it to optimum moisture and temperature conditions over two weeks. This allows microbial activity to resume and the amount of nitrogen that gets mineralized into plant-available forms can be measured. The amount of plant-available (inorganic) nitrogen that is mineralized during this period is reported and the **higher the value** – **the better.** This test was adapted for use specifically for PEI producers by the Atlantic Soil Health Lab in Truro, NS.

Soil pH and nutrient availability


Soil pH measures the acidity of the soil. Soil acidity affects many soil processes, including microbial activity and the availability of nutrients to crops. Optimum soil pH can differ by crop type, with most crops having an optimum of 6.2-6.8. However, potatoes and wild blueberries can grow well in lower pH soils.

The image below depicts the availability of different nutrients at various pH levels. The wider the band, the greater the availability of that nutrient. As pH changes, nutrients take on different chemical forms, making them more or less reactive with other compounds. Therefore, at different pH levels some nutrients are more available, and some nutrients are less available.

Crop growth is largely dependent on ensuring adequate nutrients are taken up by the plant, and can be slowed down if nutrients are not in a plant-available form. Nutrients can be referred to as macronutrients if they are required by the plant in a large volume, and micronutrients if they are required in a small amounts. Soil chemistry is an integral component of soil health, which is why the soil health test is accompanied by a full nutrient analysis. Please consult the S3 report accompanying your soil health test for detailed nutrient results for each of your samples.

Phosphorus Saturation Index

Phosphorus is a relatively immobile nutrient within the soil and can be inaccessible to the crop unless it is in a form available for plant uptake. Factors that affect phosphorus plant uptake include organic matter content, fertilizer placement, and pH. Because PEI has slightly acidic soils, iron and aluminum can chemically tie-up "free" phosphorus that would otherwise be plant available at lower pH values. The Phosphorus Saturation Index is a calculation that can help

Moebius-Clune et al. (2016), modified from Brady and Weil (1999).

predict the amount of P available to the crop, by accounting for the total amount of phosphorus and iron within the soil, as well as pH. Refer to the table below to determine if the phosphorus saturation (P/Al %) is above or below the critical P-Saturation level for your pH.

pH level of your sample	Critical P-Saturation Level	Interpretation
рН < 5.5	19%	If the P/AL % is above the critical P-saturation level listed for your pH level, then the soil is saturated with excess phosphorus. Therefore, the likelihood that crop yield will be impacted
pH > 5.5	14%	by the addition of phosphorus fertility is very low. Excess phosphorus can cause environmental issues if it moves with soil through erosion to bodies of water. A reduction in your phosphorus fertilization strategy is recommended.

For more information on the P-Saturation Index, please refer to the factsheet "Understanding the factors controlling phosphorus availability" at:

https://www.princeedwardisland.ca/en/information/agriculture-and-land/understanding-factors-controllingphosphorus-availability-crop. Specific phosphorus recommendations using the phosphorus index for potato has been developed for PEI. The P-saturation index is also used to estimate potato P requirements in Quebec (CRAAQ, 2010), and New Brunswick (New Brunswick Department). These recommendations were developed for PEI soils at plot-scale studies and validation of the recommendations for field-scale is in development. For more information see the link below:

https://www.princeedwardisland.ca/sites/default/files/publications/af nmp p fertilization recommenda tion.pdf

New Brunswick Soil & Crop Improvement Association Inc. 2-150 Woodside Lane Fredericton, NB E3C 2R9 Tel: 506-454-1736 Fax: 506-453-1985 www.nbscia.ca

C:N Ratio

Soil microbes decompose organic materials in search of nutrients and energy sources. The relative amounts of energy (C) and nutrients (N, P, S) will determine whether decomposition will result in removal (immobilization) or release of nutrients (mineralization). Organisms will only use the nutrients needed to meet their growth needs, releasing the excess nutrients into the soil in a plant-available form (mineralization).

The ratio of C:N in the soil therefore reflects the relative amounts of energy (C) and nitrogen (N) in organism matter and whether nitrogen mineralization or immobilization will occur during decomposition. When the ratio of C:N falls below 20:1, decomposition will result in plant available nitrogen being released (mineralization).

The C:N ratio for soil is calculated simply by comparing the total carbon and total nitrogen values of the sample, which are reported below the ratio. Greater soil N supply is expected in soils with a narrow C:N ratio.

New Brunswick Soil & Crop Improvement Association Inc. 2-150 Woodside Lane Fredericton, NB E3C 2R9 Tel: 506-454-1736 Fax: 506-453-1985 www.nbscia.ca

APPENDIX B: Summary of Soil Health Attributes for All Fields and Sample Sites-2019-2020

		%	%	%			ACTIVE		Aggregate					
DISTRICT	FIELD_ID	SAND	SILT	CLAY	TEXTURE	OM	CARBON	RESPIRATION	Stability	BNA	рН	P_INDEX	C:N	% C
Carleton	13	29.6	51.5	18.8	Silt Loam	2.9	364	0.69	33	12.9	5.8	18.15	9.33	1.68
Carleton	15	18.5	37.9	43.6	Clay	3	328	0.61	28.3	15.2	5.7	16.87	9.16	1.74
Carleton	17	18.9	38	43.1	Clay	3.6	368	0.75	38.9	14.8	5.6	14.92	9.95	2.09
Carleton	7	34.7	45.9	19.4	Loam	2.9	306	0.77	33.2	14.6	5.9	19.96	9.33	1.68
Carleton	9	32.3	49	18.6	Loam	3.3	368	0.6	40	13.2	5.8	14.09	10.05	1.91
Carleton	11	33.6	50.4	16	Silt Loam	3.1	326	0.69	41.7	12.1	5.8	21.36	9.47	1.8
Carleton	1	31.8	51.5	16.8	Silt Loam	2.8	420	0.58	34.3	14.5	7.2	18.4	9.53	1.62
Carleton	3	37.1	47.1	15.8	Loam	2.8	254	0.85	39.2	15.1	5.5	19.92	9	1.62
Carleton	5	36.7	48	15.3	Loam	4	496	0.84	43.3	24	6	15.41	10.55	2.32
Carleton	19	33.3	49.8	16.9	Loam	4.1	418	0.57	48.5	19.3	5.6	13.13	9.92	2.38
Carleton	21	28	51.9	20.1	Silt Loam	3.3	373	1.16	28.8	23.9	5.8	12.84	10.05	1.91
Carleton	Field 3	29.2	52.1	18.7	Silt Loam	8.8	871	2.09	94.4	63.4	6.6	4.06	10.85	5.1
Carleton	Paul 48-1A	26.4	55.9	17.8	Silt Loam	4.4	487	0.55	25.8	32.3	6.1	7.62	10.62	2.55
Carleton	Home 6	35.1	50.1	14.9	Silt Loam	5.1	676	0.65	16.8	28.7	6.2	10.11	11.38	2.96
Carleton	Home 3	26.6	57.9	15.5	Silt Loam	5	572	0.36	20.9	17.9	5.6	9.91	11.15	2.9
Carleton	CM 3	41.9	46.1	12	Loam	4	541	0.3	23.2	22.2	6.6	15.78	10.55	2.32
Carleton	BP 1	30.7	52.5	16.8	Silt Loam	3.5	428	0.3	23.7	40.8	4.5	12.39	9.23	2.03
Carleton	BP 1 Fence	19.1	60.7	20.2	Silt Loam	6.5	815	1.82	88.9	81.1	6.2	2.18	19.84	3.77
Carleton	KT 1	32.8	51.1	16.1	Silt Loam	3.4	366	0.45	21.6	29.3	5.8	18.92	5.97	1.97
Carleton	KT 1 Fence	26.4	56.1	17.5	Silt Loam	8.1	705	1.47	93.3	62	5.5	5.36	13.82	4.7
Carleton	As Main P	21.7	56.4	21.9	Silt Loam	8.4	791	1.38	89	115.1	5.7	2.45	9.19	4.87
Carleton	As Twin P	27.9	52.4	19.7	Silt Loam	7.5	769	1.48	91.5	87.6	5.8	1.21	10.36	4.35
Carleton	As Twin Low	26.2	54.1	19.6	Silt Loam	7.1	670	1.35	93.3	48.5	5.4	0.72	11.77	4.12
Carleton	As Woods	18.4	63.5	18.2	Silt Loam	12.3	1207	1.68	87.4	116.7	6.2	1.09	12.29	7.13
Carleton Avg.		29.0	51.2	19.7		5.0	538.3	0.9	49.1	38.6	5.9	11.5	10.6	2.9
StD.		6.4	5.9	7.6		2.5	231.4	0.5	28.6	32.3	0.5	6.9	2.4	1.4
		71.0	10.2	0.1	Sandy	4	454	0.53	74	22.0	Γ 4	6.6	10 55	2 22
Central	BB Pre Fum	71.6	19.3	9.1	Loam	4	454	0.52	74	22.8	5.4	6.6	10.55	2.32
Central	BB Undist	67.3	22.5	10.2	Sandy	4.8	619	0.55	80	37.1	5.9	3.34	13.9	2.78

					Loam									
	Home Farm													
Central	Frt	39.9	49.5	10.6	Loam	6.6	798	1.43	74.5	48.9	6.2	16.35	10.35	3.83
Central	Home Farm B	35.2	51.7	13.1	Silt Loam	8.4	960	1.52	70.9	55.7	6.5	20.1	11.07	4.87
Central	Tree Line	46.4	44.4	9.3	Loam	7.7	711	0.96	93.1	35.9	5.7	4.2	13.15	4.47
Central	6-May	25.2	55.6	19.2	Silt Loam	8.2	990	1.58	81.7	84	6.3	3.09	11.07	4.76
Central	Treeline 5/6	21.4	59.2	19.4	Silt Loam	7.2	722	1.68	89.4	96.2	5.7	2.92	10.2	4.18
					Sandy									
Central	Strip 1	54.1	37.7	8.2	Loam	1.6	327	0.64	46	29.5	6.1	5.31	7.75	0.93
Central	Strip 2	45.9	43.6	10.5	Loam	2.2	290	0.68	52.7	34.3	6	9.4	8	1.28
Central	Strip 3	39.3	49.8	10.9	Loam	1.9	292	0.64	56.3	37	6	5.58	7.33	1.1
Central	Tree Line	43	46.8	10.2	Loam	3.1	615	1.65	53	53	6.4	3.74	9.47	1.8
					Sandy	. –								
Central	Blue After F	71.4	20.9	7.7	Loam	4.7	519	0.68	65	25.8	5.6	7.27	12.41	2.73
Central	BC 38	33.1	52.9	13.8	Silt Loam	6	718	0.7	68	47.7	6	6.4	9.67	3.48
Central	BC 38 Woods	26	56.6	17.5	Silt Loam	10.2	834	1.63	93.9	111.7	4.8	8.05	12.87	5.92
Central	BC 21	22.7	62.7	14.6	Silt Loam	7.1	787	0.62	82.3	52.1	6.2	2.42	9.36	4.12
Central	BC 21 Woods	22.3	61.4	16.2	Silt Loam	8.9	948	1.36	93.3	88.4	5.9	1.41	10.12	5.16
Central Avg.		41.6	45.9	12.5		5.8	661.5	1.1	73.4	53.8	5.9	6.6	10.5	3.4
StD.		17.2	14.1	3.8		2.7	231.8	0.5	15.6	27.0	0.4	5.1	1.9	1.6
Kings	SUS037	36.2	49.8	14	Loam	5.3	767	0.92	50.2	61.8	6	10.87	8.53	3.07
Kings	SUS037Woods	33.3	52.3	14.4	Silt Loam	6.1	813	1.01	61.2	67.6	6.3	7.03	9.57	3.54
Kings	SPR305	42.5	41.8	15.7	Loam Sandy	5.4	599	1.77	74.3	79.6	5.5	1.77	8.94	3.13
Kings	SPR286	55.9	32.7	11.4	Loam	6.8	706	1.17	78.6	62.8	5.8	3.05	10.94	3.94
Kings	STU261	23.8	59.1	17.1	Silt Loam Loamy	5.2	656	0.89	50.2	54.2	6	4.4	9.44	3.02
Kings	DIC457	77.1	17.1	5.8	Sand Sandy	6.2	529	0.36	38.7	8.5	6.2	19.33	12.41	3.6
			24.0	107	Loam	5.4	702	1.13	55.6	58.3	6.2	9.08	10.79	3.13
Kings	ORT011	57.4	31.9	10.7	Sandy	J. 4	702	1.15	0010	00.0	0.2	5.00		
Kings Kings	ORT011 BER526	57.4 61.9	31.9 28.4	9.7		1.7	250	0.43	15.6	23.8	6.1	6.6	9	0.99
-					Sandy									
Kings Kings	BER526	61.9	28.4	9.7	Sandy Loam	1.7	250	0.43	15.6	23.8	6.1	6.6	9	0.99
Kings	BER526 PHI351	61.9 40.7	28.4 41.9	9.7 17.3	Sandy Loam Loam	1.7 4.1	250 734	0.43 0.8	15.6 18.5	23.8 33.2	6.1 6.7	6.6 8.41	9 13.22	0.99 2.38

Kings	BER431	48.3	43.5	8.1	Loam Sandy	6.2	915	1.02	82.9	45.3	6.4	26.81	10	3.6
Kings	BER478	57.3	31.3	11.3	Loam Sandy	2.8	381	0.34	22.7	17.5	5.9	7.66	9.53	1.62
Kings	SUS308	54.1	35.2	10.6	Loam	3.2	546	0.65	21.1	34.3	6.3	13.69	9.3	1.86
Kings		47.5	42.5	10	Loam	6.8	888	0.94	59.5	52.4	6.5	5.66	10.65	3.94
Kings Avg.		48.5	39.7	11.8		5.0	658.3	0.9	50.4	45.3	6.1	9.0	10.4	2.9
StD.		13.0	10.3	3.6		1.5	184.2	0.3	22.9	20.0	0.5	6.4	1.6	0.9
Moncton	COR487	49.2	37.5	13.3	Loam	5	751	0.66	32.2	42.4	6.3	17.7	14.5	2.9
Moncton		43.4	38.2	18.4	Loam	9.2	836	2.48	78.8	78.5	4.5	7.43	13.69	5.34
Moncton		47.1	36.8	16.1	Loam	3.3	310	0.7	35.1	22.3	5.3	3.01	12.73	1.91
Moncton	HIL431	45.9	40.9	13.1	Loam	6.3	706	0.72	63.4	43.5	5.2	4.56	10.43	3.65
Moncton	COL184	44.7	40.6	14.7	Loam	5.9	777	1.48	64.5	43.4	6.8	8.65	10.06	3.42
Moncton	URY331	50.2	38.3	11.5	Loam	5.5	724	0.86	71	59.4	5.8	6.68	11	3.19
Moncton		36.9	52.1	11	Silt Loam	4.1	478	2.17	76.3	99.4	5	7.66	11.33	2.38
Moncton Avg.		45.3	40.6	14.0		5.6	654.6	1.3	60.2	55.6	5.6	8.0	12.0	3.3
StD.		4.4	5.3	2.6		1.9	189.1	0.8	19.0	25.9	0.8	4.7	1.7	1.1
Chignecto	ELL113	49.7	35.4	14.9	Loam	5.3	451	1.02	71.8	66.2	5.7	2.66	10.96	3.07
Chignecto	ELL113woods	37.4	42.6	20	Loam	6.1	669	1.68	78.5	69	5.9	2.04	10.41	3.54
Chignecto	WES228	54.5	34.2	11.3	Sandy Loam Sandy	4.9	780	1.52	64.8	37.4	6.9	11.4	11.83	2.84
Chignecto	MEI276	54	36	10	Loam	1.5	276	0.73	10.3	23.1	6.6	16.94	8.7	0.87
Chignecto	COK186	46.1	41.3	12.3	Loam	5.3	850	1.53	78.1	54.8	6.8	7.09	10.59	3.07
Chignecto	GIN770	46.6	39.8	13.6	Loam	6.4	640	0.87	80.9	51	4.9	9.99	11.97	3.71
Chignecto	SAC852	7.8	51.5	40.7	Silty Clay	19.6	1320	1.21	81.1	64.1	4.5	2.95	11.15	11.37
Chignecto		3.8	74.2	22	Silt Loam	9.6	853	1.61	67	135.5	5.3	4.86	9.28	5.57
Chignecto	GIN812	48.7	39.4	11.8	Loam	4.1	634	0.68	37.1	41.1	7.2	3.83	11.33	2.38
Chignecto Avg		38.7	43.8	17.4		7.0	719.2	1.2	63.3	60.2	6.0	6.9	10.7	4.0
Std.		19.4	12.5	9.6		5.2	292.4	0.4	24.1	32.0	1.0	5.0	1.1	3.0
North Shore	DAL949	33	48.5	18.5	Loam	5.9	713	0.93	51.8	22.7	7.1	43.14	9.77	3.42
North Shore	DAL315	22.3	55.6	22.1	Silt Loam	8.9	1109	1.12	81.7	54.4	6.6	2.89	12.59	5.16
North Shore	COL150	46.7	35.2	18.1	Loam	10.1	1087	1.33	61.3	67.6	7.3	28.94	11.27	5.86
North Shore	FRE158	34.9	47.4	17.7	Loam	9.3	1149	1.11	82.3	84.3	6.5	10.41	10.57	5.39
North Shore	NEP076	9.6	69.7	20.8	Silt Loam	5.8	677	1.65	75.1	45.9	6.3	1.58	10.5	3.36
North Shore	CAN041	40.2	41.5	18.3	Loam	5.2	901	1.22	40.2	47.8	6.9	5.49	11.19	3.02
C1920-0036-Y2 Interin	n Report Feb5 2021 - A	AGedits												

					Clay									
North Shore	CLI247	20.4	51.3	28.4	Loam	6.8	916	1.73	62.8	59.8	6.5	4.54	10.37	3.94
North Shore	LAD038	47.7	40.6	11.7	Loam	4.9	667	0.91	85.4	23.6	6.3	2.07	10.52	2.84
Northshore Avg	•	31.9	48.7	19.5		7.1	902.4	1.3	67.6	50.8	6.7	12.4	10.8	4.1
StD.		12.6	10.0	4.4		1.9	187.0	0.3	15.2	19.6	0.3	14.3	0.8	1.1
Northwest	QEU283	32	52.6	15.4	Silt Loam	9.9	1187	0.91	80.2	56.3	6.9	7.37	10.44	5.74
Northwest	DAV253	21.6	61.5	16.9	Silt Loam	3	677	0.48	71.2	37.3	6	13.7	9.67	1.74
Northwest	BOU286	39	47.8	13.2	Loam	9.3	397	0.35	33.4	17.6	6	2.41	11.23	5.39
Northwest		35.9	51	13.2	Silt Loam	4.9	542	0.58	70.6	38.1	5.7	11.79	10.92	2.84
Northwest	BOU380	39.3	46	14.7	Loam	8.8	1050	1.34	87.3	49.9	7.1	27.99	11.09	5.1
Northwest	AMA214	37.5	46.7	15.8	Loam Sandy	5.2	678	0.35	61.3	26.6	6.1	5.78	10.07	3.02
Northwest	BEL072	62.1	31.1	6.8	Loam	6	773	1.03	94.6	25.7	6.8	16.72	10.55	3.48
Northwest	VAN039	50.2	36.3	13.5	Loam	10.6	876	0.94	100	58.6	5.2	3.42	9.46	6.15
Northwest	QEU306	24.4	58.6	16.9	Silt Loam	5.8	851	0.63	52.7	35.6	6	12.24	9.88	3.36
Northwest	VIO230	28.2	53.1	18.7	Silt Loam	10.2	1218	1.51	88	58.8	7	24.23	9.25	5.92
Northwest		24.6	52.1	23.3	Silt Loam	8.7	814	1.2	98.2	69.6	5.7	6.07	11.48	5.05
Northwest	BOU372	20.5	58.4	21.1	Silt Loam	13.5	1092	1.39	97.9	99.3	5.2	4.42	11.51	7.83
Northwest	BEL202	24.9	59.8	15.4	Silt Loam	6.6	825	1.86	90.4	39.7	6.8	10.94	10.35	3.83
Northwest	GOD033	39	48.6	12.4	Loam	3.4	386	0.42	42	15.3	5	13.73	9.85	1.97
Northwest	QUE306	37.6	57.1	5.2		5.2	936	1.88	95.3	66.8	6.4	9.02	9.74	3.02
Northwest		21.9	61.7	16.4	Silt Loam	5.7	710	0.59	68.6	38.4	5.5	8.83	9.46	3.31
Northwest Avg.		33.7	51.4	14.9		7.3	813.3	1.0	77.0	45.9	6.1	11.2	10.3	4.2
StD.		11.4	8.7	4.5		2.9	249.8	0.5	21.0	21.8	0.7	7.1	0.8	1.7
2020	Average of 95:	37.5	46.8	15.7		5.9	680.4	1.0	61.7	47.7	6.0	9.6	10.6	3.4
2019	Average of 93	46.2	40.0	13.8		5.7	555.0	na	61.5	na	5.9	na	na	na
	0	%	%	%			ACTIVE		Aggregate					
DISTRICT	FIELD_ID	SAND	SILT	CLAY	TEXTURE	OM	CARBON	RESPIRATION	Stability		рН			
Carleton														
BRO169	BRO169	36.84	49.07	14.10	Loam	5.7	774		83.50		5.8			
BRO168	BRO168	28.86	56.34	14.80	Silt Loam	5.4	664		77.35		5.1			
WIL098	WIL098	33.58	51.15	15.28	Silt Loam	4.2	590		22.39		7.1			
WHI250-	WHI250	27.05	54.14	18.82	Silt Loam	5.4	707		97.60		5.7			
	1_Report_Feb5_2021 -													

Fence									
WHI251	WHI251	27.03	53.96	19.01	Silt Loam	3.2	491	31.76	5.1
WHI239-Past	WHI239	49.67	38.80	11.52	Loam	6.2	522	99.53	5.4
TPA116	TPA116	25.97	57.54	16.49	Silt Loam	5.9	485	91.06	5.7
FAR289-New	FAR289-New	27.58	55.12	17.31	Silt Loam	6.2	653	60.68	6.8
FAR289	FAR289	32.08	52.39	15.53	Silt Loam	4.3	407	47.58	6.7
MOO370	MOO370	30.17	52.38	17.45	Silt Loam	5.2	531	60.69	6
POL207	POL207	27.85	53.17	18.98	Silt Loam	6	520	90.52	6.2
POL188	POL188	32.38	47.50	20.12	Loam	4.8	492	37.83	5.7
001205	DOI 205	57.20	20.20	42.50	Sandy	~	CE 4	42.02	6.6
POL285	POL285	57.20	29.30	13.50	Loam Clay	6	654	42.82	6.6
POL286	POL286	43.01	37.07	19.91	Loam	8.6	815	75.84	5.9
ESD261	ESD261	47.30	39.64	13.07	Loam	10.3	812	86.69	6.2
NIX242	NIX242	43.64	46.48	9.88	Loam	4.4	534	33.71	6.3
BAT233	BAT233	42.47	46.32	11.21	Loam	4.9	508	53.86	6.1
BAT393	BAT393	32.02	53.63	14.35	Silt Loam	5	474	41.25	6.7
GUI353-New	GUI353-New	20.86	62.80	16.34	Silt Loam	10.6	1060	54.80	6.9
GUI353	GUI353	34.50	52.74	12.76	Silt Loam	4.4	389	38.40	6.3
KNO303	KNO303	31.72	54.18	14.10	Silt Loam	4.1	400	51.80	4.7
FIE070	FIE070	40.03	48.13	11.84	Loam	6.8	430	66.86	5.7
ELM053-1	ELM053-1	39.37	45.47	15.17	Loam	4.9	499	53.95	6.3
ELM053-2	ELM053-2	39.82	44.25	15.94	Loam	4.7	473	44.45	6.2
ELM 053-3	ELM 053-3	41.24	44.01	14.76	Loam	5.2	595	47.08	6.3
ELM 053-4	ELM 053-4	39.12	43.70	17.18	Loam	5.6	551	47.27	6.3
WAT 421	WAT 421	33.33	49.45	17.22	Loam	3.3	503	37.96	5.7
ELM 027-1	ELM027	36.70	46.84	16.47		3	440	22.29	5.5
CHE409	CHE409	59.19	28.72	12.10	Sandy Loam	2.6	302	41.82	6
CHE409 CHE404	CHE409 CHE404	29.83	53.64	12.10	Silt Loam	2.0 6.6	502 549	41.82 51.31	6.9
Carleton Avg.		36.3	48.3	15.4	Loam	5.5	560.8	56.4	6.1
StD.		9.0	7.8	2.7	LUan	1.8	155.0	22.0	0.1
	im Report Feb5 2021 -		7.0	2.7		1.0	133.0	22.0	0.0

Moncton

	HIC887A	34.48	42.96	22.56	Loam	4.6	na	49.82	6
	HIC887B	43.16	38.96	17.87	Loam	3.9	362	38.92	6.6
					Sandy		42.4		6
	URY805	59.86	29.71	10.43	Loam Sandy	3	424	41.61	6
	URY805-BO	52.41	35.27	12.32	Loam	4.4	na	59.94	6
	JPR246	51.22	33.02	15.76	Loam	3	403	18.46	6.5
	COL373A	42.55	44.16	13.29	Loam	3.2	403	18.40	6.8
	COL373B	41.93	43.34	14.73	Loam	2.8	428	23.83	6.8
	SYN211	11.96	74.04	14.00	Silt Loam	3.1	428	74.71	6.4
	OGD734A				na	4.6	609	68.34	5.1
	OGD734B				na	5.2	na	45.75	5.3
					Sandy		- 40		
	COK428A	53.17	36.24	10.59	Loam Sandy	4.1	548	54.95	6.2
	COK428B	54.41	35.44	10.15	Loam	3.8	na	62.52	6.7
					Sandy				
	URR192	49.71	32.17	18.11	Loam	3.7	359	58.28	5.9
	DOR008	53.15	30.69	16.16	Sandy Loam	6.6	na	66.35	6.2
	Denote	55115	50.05	10.10	Sandy	0.0		00.00	0.2
	LAG093A	62.37	23.49	14.14	Loam	2.9	321	22.53	5.4
	LAG093B	58.70	26.70	14.61	Sandy Loam	3.3	na	32.22	5.8
	LAGU93B	58.70	20.70	14.01	Sandy	5.5	IId	32.22	5.8
	GIN730	52.98	32.72	14.31	Loam	4.6	325	40.00	6
					Sandy	_	69.4		
	WES133	61.08	26.31	12.61	Loam	5	621	62.65	6.3
Moncton Avg.		48.9	36.6	14.5	Loam	4.0	436.0	46.6	6.1
StD.		12.5	11.7	3.2		1.0	102.7	18.1	0.5
Central					Correlu				
	LAP060	59.44	27.64	12.93	Sandy Loam	8.4	844	85.81	5.7
	GAW132	49.64	40.84	9.52	Loam	9	888	89.64	6.7
	0.00101	10101	10.01	0.02	Louin	-		00.01	0.7

C1920-0036-Y2_Interim_Report_Feb5_2021 - AGedits

					Sandy				
	LYN800	64.68	27.58	7.74	Loam	10.5	926	95.91	5.9
	QUN243	30.96	44.96	24.08	Loam	6.8	615	85.02	6.1
	SHE203	50.19	34.93	14.88	Loam	8.3	821	79.74	5.7
	SHE206	48.20	36.03	15.78	Loam	6.3	548	88.10	5.2
	PRW100	39.27	48.53	12.21	Loam	4.2	681	61.81	6.4
					Sandy				
	LAO995	58.79	30.70	10.51	Loam	10.5	973	96.39	6.4
Central Avg.		48.9	37.2	13.9	Loam	7.6	760.4	83.7	6.0
StD.		11.4	8.1	5.3		2.1	145.4	10.8	0.5
Northshore									
	DAL326				na	18.1	na	63.35	6.4
	DUR093	67.02	22.37	10.61	Loamy	БЭ	474	78.52	5.9
		67.02			Sand	5.2	627		
	FRE148	39.52	42.51	17.97	Loam	10		87.57	5.7
	NEP025				na	6.4	na	58.06	6.9
	SAL298				na Loamy	10	701	82.31	6.4
	Egodin	80.79	14.49	4.73	Sand	3.5	259	70.02	4.3
	MOR355				na	3.7	357	54.16	4.1
					Loamy				
	LStewART	77.74	16.41	5.86	Sand	3.3	322	53.84	4
	D 4 D 1 0 0	75.26	10.74	6 50	Sandy	го	437	46.90	4 1
	BAR188	75.26	18.24	6.50	Loam Sandy	5.8	457	46.80	4.1
	ALePage	75.52	17.51	6.97	Loam	5.1	439	62.08	4.2
					Loamy				
	ESavoie	78.24	14.44	7.31	Sand	2.8	293	55.07	4.4
	OSE001	67.47	21.11	11 42	Loamy Sand	4.6	277	74.52	4.6
Northshore	032001	07.47	21.11	11.72	Loamy	ч. 0	2,,,	74.52	
Avg.		70.2	20.9	8.9	Sand	6.5	418.6	65.5	5.1
StD.		13.3	9.2	4.3		4.3	149.6	12.9	1.1
Northwest									
	65060-345	42.75	44.32	12.92	Loam	3.7	427	21.25	5.1
C1920-0036-Y2 Interi	m Report Feb5 2021 -	AGedits							

	650-66-409	46.82	38.70	14.48	Loam	4.5	518	30.05	5.5
	351-05-733	43.27	37.30	19.42	Loam	6.8	853	89.54	6.2
					Sandy				
	352-56-510	52.58	35.53	11.89	Loam	8.7	835	95.90	5.1
	350-48-107	45.64	40.49	13.88	Loam	9.8	1068	95.53	7
	350-46-651	55.02	32.08	12.91	Sandy	10.7	842	92.62	6.5
	550-40-051	55.02	52.00	12.91	Loam Sandy	10.7	042	92.02	0.5
	350-31-186	52.34	36.34	11.31	Loam	8	856	96.17	6.6
	350-23-076	42.87	46.30	10.84	Loam	6.2	na	81.71	5.6
	500-14-133	28.20	52.17	19.63	Silt Loam	5.1	na	82.55	5.6
	500-17-615	38.15	46.59	15.26	Loam	11.3	534	69.17	6.6
	352-13-008	41.10	49.15	9.76	Loam	5.3	805	70.88	6.5
	500-14-257	39.84	44.29	15.87	Loam	6.7	594	77.83	4.9
	650-60-202	44.73	40.09	15.17	Loam	3.7	599	16.65	5.8
Northwest									
Avg.		44.1	41.8	14.1	Loam	7.0	721.0	70.8	5.9
StD.		7.0	5.9	3.0		2.6	196.1	29.0	0.7
StD. Kings			5.9			2.6			
	CHA063	41.12	5.9 47.87	11.01	Loam	2.6 5.6	337	89.74	6.6
	CHA063B	41.12 45.15	5.9 47.87 44.05	11.01 10.80	Loam Loam	2.6 5.6 6.4	337 680	89.74 87.99	6.6 6.3
		41.12	5.9 47.87	11.01	Loam Loam Loam	2.6 5.6	337	89.74	6.6
	CHA063B TIT352	41.12 45.15 37.09	5.9 47.87 44.05 49.69	11.01 10.80 13.22	Loam Loam Loam Sandy	2.6 5.6 6.4 5.7	337 680 625	89.74 87.99 66.02	6.6 6.3 6.3
	CHA063B	41.12 45.15	5.9 47.87 44.05	11.01 10.80	Loam Loam Loam Sandy Loam	2.6 5.6 6.4	337 680	89.74 87.99	6.6 6.3
	CHA063B TIT352	41.12 45.15 37.09	5.9 47.87 44.05 49.69	11.01 10.80 13.22	Loam Loam Loam Sandy	2.6 5.6 6.4 5.7	337 680 625	89.74 87.99 66.02	6.6 6.3 6.3
	CHA063B TIT352 WIC452	41.12 45.15 37.09 67.28	5.9 47.87 44.05 49.69 23.15	11.01 10.80 13.22 9.57	Loam Loam Loam Sandy Loam Sandy	2.6 5.6 6.4 5.7 5	337 680 625 369	89.74 87.99 66.02 84.99	6.6 6.3 6.3 5.5
	CHA063B TIT352 WIC452 PHI351	41.12 45.15 37.09 67.28 57.34	5.9 47.87 44.05 49.69 23.15 28.01	11.01 10.80 13.22 9.57 14.66	Loam Loam Loam Sandy Loam Sandy Loam	2.6 5.6 6.4 5.7 5 3.3	337 680 625 369 na	89.74 87.99 66.02 84.99 17.49	6.6 6.3 6.3 5.5 6.9
	CHA063B TIT352 WIC452 PHI351 SUS137	41.12 45.15 37.09 67.28 57.34 47.34	5.9 47.87 44.05 49.69 23.15 28.01 40.78	11.01 10.80 13.22 9.57 14.66 11.89	Loam Loam Sandy Loam Sandy Loam Loam Loam Loam	2.6 5.6 6.4 5.7 5 3.3 3.6	337 680 625 369 na 369	89.74 87.99 66.02 84.99 17.49 49.45	6.6 6.3 6.3 5.5 6.9 6.1
	CHA063B TIT352 WIC452 PHI351 SUS137 ORT012 SUS617	41.12 45.15 37.09 67.28 57.34 47.34 47.64 39.30	5.9 47.87 44.05 49.69 23.15 28.01 40.78 38.67 44.84	11.01 10.80 13.22 9.57 14.66 11.89 13.68 15.86	Loam Loam Sandy Loam Sandy Loam Loam Loam Loam Sandy	2.6 5.6 6.4 5.7 5 3.3 3.6 6.2 5.4	337 680 625 369 na 369 560 481	89.74 87.99 66.02 84.99 17.49 49.45 83.65 75.23	6.6 6.3 6.3 5.5 6.9 6.1 6.5 6.3
	CHA063B TIT352 WIC452 PHI351 SUS137 ORT012	41.12 45.15 37.09 67.28 57.34 47.34 47.64	5.9 47.87 44.05 49.69 23.15 28.01 40.78 38.67	11.01 10.80 13.22 9.57 14.66 11.89 13.68	Loam Loam Sandy Loam Sandy Loam Loam Loam Loam Sandy Loam	2.6 5.6 6.4 5.7 5 3.3 3.6 6.2	337 680 625 369 na 369 560	89.74 87.99 66.02 84.99 17.49 49.45 83.65	6.6 6.3 6.3 5.5 6.9 6.1 6.5
	CHA063B TIT352 WIC452 PHI351 SUS137 ORT012 SUS617	41.12 45.15 37.09 67.28 57.34 47.34 47.64 39.30	5.9 47.87 44.05 49.69 23.15 28.01 40.78 38.67 44.84	11.01 10.80 13.22 9.57 14.66 11.89 13.68 15.86	Loam Loam Sandy Loam Sandy Loam Loam Loam Loam Sandy	2.6 5.6 6.4 5.7 5 3.3 3.6 6.2 5.4	337 680 625 369 na 369 560 481	89.74 87.99 66.02 84.99 17.49 49.45 83.65 75.23	6.6 6.3 6.3 5.5 6.9 6.1 6.5 6.3
	CHA063B TIT352 WIC452 PHI351 SUS137 ORT012 SUS617 SUS413	41.12 45.15 37.09 67.28 57.34 47.34 47.64 39.30 56.08	5.9 47.87 44.05 49.69 23.15 28.01 40.78 38.67 44.84 30.87	11.01 10.80 13.22 9.57 14.66 11.89 13.68 15.86 13.05	Loam Loam Sandy Loam Sandy Loam Loam Loam Sandy Loam Sandy	2.6 5.6 6.4 5.7 5 3.3 3.6 6.2 5.4 3.8	337 680 625 369 na 369 560 481 486	89.74 87.99 66.02 84.99 17.49 49.45 83.65 75.23 51.27	6.6 6.3 6.3 5.5 6.9 6.1 6.5 6.3 5.8
	CHA063B TIT352 WIC452 PHI351 SUS137 ORT012 SUS617 SUS413 WFL119	41.12 45.15 37.09 67.28 57.34 47.34 47.64 39.30 56.08 53.80	5.9 47.87 44.05 49.69 23.15 28.01 40.78 38.67 44.84 30.87 34.59	11.01 10.80 13.22 9.57 14.66 11.89 13.68 15.86 13.05 11.60	Loam Loam Sandy Loam Sandy Loam Loam Loam Sandy Loam Sandy Loam	2.6 5.6 6.4 5.7 5 3.3 3.6 6.2 5.4 3.8 8.5	337 680 625 369 na 369 560 481 486 620	89.74 87.99 66.02 84.99 17.49 49.45 83.65 75.23 51.27 96.98	6.6 6.3 6.3 5.5 6.9 6.1 6.5 6.3 5.8 5.7

					Loam				
					Sandy				
	OHN211	52.93	35.38	11.69	Loam	4.6	394	87.58	5.2
Kings Avg.		50.6	37.0	12.4	Loam	4.9	466.6	66.3	6.0
StD.		10.0	9.0	2.0		1.6	131.2	25.7	0.5